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Abstract

The thesis aims to introduce the general theory of Gelfand pairs and associated spher-

ical harmonic analysis. Gelfand pairs and spherical functions have been studied keep-

ing harmonic analysis on locally compact Abelian groups as a guiding theme.

Next, the unitary dual of and Plancherel Theory of Heisenberg group are studied

in detail, in the non-commutative setting. Using the above results on Heisenberg

group, the Gelfand pair consisting of Heisenberg Motion group and Unitary group

has been studied in its complete detail. Fourier inversion formula and Plancherel

measure for this Gelfand Pair are computed.

Keywords: representation theory, Gelfand pairs, spherical harmonic analysis, Heisen-

berg group, Heisenberg motion group
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Introduction
The aim of this dissertation is to introduce and study one important aspect of non-

commutative harmonic analysis viz., Spherical Harmonic Analysis. If there exists a

compact subgroup K of a locally compact group G, with certain special features then

the replica of commutative harmonic analysis finds its way in a class of K- biinvariant

functions on G. Such a pair (G,K) is called Gelfand Pair. This sort of study was

initiated by Elie Cartan and Gelfand which is quite successful in understanding the

harmonic analysis on non-commutative groups.

We define Gelfand pairs and develop the abstract theory of Spherical Fourier

analysis which is quite analogous to the case of abelian groups. Then applying the

above theory we study the concrete Gelfand Pair consisting of Heisenberg motion

group and Unitary group. As a prerequisite of the above, we need to know the

concrete realisation of the unitary dual of Heisenberg group, in terms of Schrodinger

representations and Bargmann-Fock space representations along with the Plancherel

measure for Heisenberg group. We expose the above non-commutative theory of

Heisenberg group in a separate chapter.

The Heisenberg group is the most well-known and a simplest case in the realm of

non-compact and non-commutative locally compact groups to study non-commutative

harmonic analysis. It is a nilpotent Lie group and plays an important role in several

branches of mathematics, such as representation theory, partial differential equations,

and number theory. Also it offers the greater opportunity for generalising the well

known and remarkable results of the Euclidean harmonic analysis.

In the following we specify the detailed chapter-wise contents of the dissertation.

The Chapter 1 collates the results of harmonic analysis on Euclidean spaces. It
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also introduces the Nilpotent Lie groups and algebras to help us understand the main

discussion.

Chapter 2 introduces Gelfand pairs. This allows us to develop the abstract theory

of spherical harmonic analysis for locally compact groups which includes Plancherel

inversion formula and Plancherel-Godement theorem.

Chapter 3 deals with the unitary dual of Heisenberg group in detail. The Stone

Von Neumann help us in this regard. We then study the Plancherel theorem for this

group. In the end, we consider Fock-Bargmann space representation which help us

to find spherical functions on Heisenberg motion group.

In the fourth chapter, we introduce Heisenberg motion group and consider the

Gelfand pair consisting of Heisenberg motion group and Unitary group. We then

proceed to compute the positive definite spherical functions on it with help of Bessel’s

functions, Laguerre polynomials and irreducible representations on Heisenberg group.

Finally, we make use of abstract theory to introduce the Fourier inversion formula

and the Plancherel-Godement measure for this group.

At last, the Appendix briefly discusses Trace-class, Hilbert-Schmidt operators and

Krein-Milman theorem.
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Chapter 1

Preliminaries
1.1 Representation theory on locally compact groups

Refer to [3] for detailed proofs pertaining to this section.

Definition 1. A left Haar measure on a locally compact group G is a positive regular

Borel measure µ such that µ(xE) = µ(E), E ∈ B and x ∈ G.

Theorem 1. Let G be locally compact group. There exists a left Haar measure µ on

G. If ν is any other left Haar measure on G, then there exists a constant c > 0 such

that ν = cµ.

Definition 2. A representation of G on V is a map π : G→ L(V), such that

(1) π(g1g2) = π(g1)π(g2), π(e) = I,

(2) for every v ∈ V, the map

G→ V ,

g 7→ π(g)(v),

is continuous.

Furthermore, if π(x) is a unitary operator for each x ∈ G, then (π,H) is said to

be a unitary representation. Let (π1,V1) and (π2,V2) be two representation of G. If

a continuous linear map A from V1 to V2 satisfies the relation Aπ1(g) = π2(g)A, for

every g ∈ G, Then A is called the intertwinning operator.

Definition 3. The representations (π1,V1) and (π2,V2) are said to be equivalent if

there exists an isomorphism A : V1 → V2 which intertwins the representation π1 and

π2.
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1 Preliminaries

Theorem 2. (Schur’s Lemma):

(i) Let (π1,V1) and (π2,V2) be two finite dimensional irreducible representation of

a topological group G. Let A : V1 → V2 be a linear map which intertwins the

representations π1 and π2:

Aπ1(g) = π2(g)A

for every g ∈ G. Then either A = 0, or A is an isomorphism.

(ii) Let π be an irreducible C-linear representation of a topological group G on a

finite dimensional complex vector space V. Let A : V → V be a C-linear map

which commutes to the representation π:

Aπ(g) = π(g)A

for every g ∈ G. Then there exists λ ∈ C such that

A = λI.

Let G be a locally compact group. Let ∆ denote the modular function on G.

Proposition 1. The space of all continuous function with compact support in Rn

(denoted by C∞c (Rn)) is dense in Lp(Rn) for all 1 ≤ p <∞.

Definition 4. For all f, g ∈ L1(G), define the convolution of f and g as

f ∗ g(x) =

∫
G

f(xy)g(y−1)dy.

Lemma 1. The convolution f ∗ g ∈ L1(G) if f, g ∈ L1(G) and ‖f ∗ g‖ ≤ ‖f‖1‖g‖1.

Theorem 3. G is an Abelian group if and only if L1(G) is Abelian.

4



1 Preliminaries

Proof. Let f, g ∈ L1(G). If G is Abelian then

(f ∗ g)(x) =

∫
G

f(xy)g(y−1)

=

∫
G

f(yx)g(y−1)dy

=

∫
G

f(y−1x)g(y)dy [∵ ∆(y) = 1]

= (g ∗ f)(x)

Conversely, assume that g ∗ f = f ∗ g ∀f, g ∈ L1(G).

(f ∗ g − g ∗ f)(x) =

∫
G

f(xy)g(y−1)− g(y)f(y−1x)dy

=

∫
f(xy−1g(y)∆(y−1)dy −

∫
g(y)f(y−1x)dy

=

∫
G

g(y)[f(xy−1)∆(y−1)− f(y−1x)]dy = 0, ∀g, f

Therefore, f(xy−1)∆(y−1)− f(y−1x) = 0, ∀f . If x = e, ∆(y−1) = 1,∀y. Hence, G is

unimodular. Now,

f(xy−1)− f(y−1x) = 0 ∀x, y, ∀f ∈ Cc(G),

Hence, xy = yx, which gives that G is Abelian.

Definition 5. The map ∗ : L1(G)→ L1(G) given by

f ∗(x) = ∆(x−1f(x−1),

is called involution on G.

Note that we have (f ∗ g)∗ = g∗ ∗ f ∗ and ‖f ∗‖ = ‖f‖.

Remark: L1(G) with convolution and involution forms a Banach-*-algebra.

1.2 Harmonic analysis on Rn

Here we recollect the important results regarding Euclidean harmonic analysis. One

may refer to [12] and [6] for detailed proofs.
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1 Preliminaries

Definition 6. For all ξ ∈ Rn, f ∈ L1(Rn), we have the Fourier transform of f as

f̂(ξ) =

∫
Rn
e−iξ·xf(x)dx,

where, ξ · x =
∑n

j=1 ξjxj.

Theorem 4. (Fourier inversion formula) If f ∈ L1(Rn) and f̂ ∈ L1(Rn) then

f(x) =
1

(2π)n

∫ n

R
f̂(ξ)eiξxdξ.

Note that (
Rn,

dξ

(2π)n

)
is called dual group of Rn and is denoted by R̂n. dξ

(2π)n
is the Plancheral measure.

Hence, we have Rn ∼= R̂n.

Theorem 5. (Plancheral theorem)

1. For all f ∈ (L1 ∩ L2)(Rn, dx),

‖f‖2
L2(Rn,dx) = ‖f̂‖2

L2(Rn,dξ/(2π)n).

2. The Fourier transform extends into an isometry from L2(Rn, dx) onto L2(Rn, dξ
(2π)n

).

1.3 Nilpotent Lie algebras

Let g be a Lie algebra over R (see [8] for detailed proofs regarding the following

discussions).

Definition 7. The descending central series of g is defined inductively by

g(1) = g,

g(n+1) = [g, g(n)] = R− span{[X, Y ]|X ∈ g, Y ∈ g(n)}

6



1 Preliminaries

Lemma 2. For all integers p and q, [g(p), g(q)] ⊆ g(p+q). In particular, each g(k) is an

ideal in g.

Proof. This is clear if p = 1. Otherwise, we have

[g(p+1), g(q)] = [[g, g(p)], g(q)] ⊆ [g(p), [g, g(q)]] + [g, [g(p), g(q)]]

⊆ [g(p), g(q+1)] + [g, g(p+q)] = g(p+q+1)

by Jacobi’s identity and induction.

Definition 8. g is a nilpotent Lie algebra if there exists an integer n such that g(n+1) =

(0).

Remark: If g(n) 6= (0) as well, that is n is minimal, then g is said to be n-step

nilpotent.

Let g be any Lie algebra and let g(1) = z(g) be the center of g, define

Definition 9.

g(j) = {X ∈ g : [X.g] ⊂ g(j−1)}.

Remark: Each g(j) is an ideal. Thus sequence of ideals is called ascending central

series for g.

Proposition 2. The Lie algebra g is n-step nilpotent iff g = g(n) 6= g(n−1).

Proof. First, we show that g(j) ⊆ g(n−j+1). For j = n, this is clear, since g is n-step

nilpotent and hence g(n) is central. If g(j+1) ⊆ g(n−j), then [g, g(j)] ⊆ g(n−j). Therefore

the image of g(j) is in the center of g/g(n−j), so that g(j) ⊆ g(n−j+1) and hence, if g is

nilpotent, then g = g(n).

Now, we show inductively that g(j) ⊆ g(m+n−j). Since g(m) = g(1), the results holds for
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1 Preliminaries

j = 1. If it holds for j, then the image of g(j) is central in g/g(m−j). Hence g(j+1) =

[g, g(j)] ⊆ g(m−j), and the results holds for j + 1. This shows g(m) = g 6= g(m−1), then

g(m+1) = 0 and therefore the result.

Lemma 3. Let g be a Lie algebra.

1. if g is nilpotent, so are all subalgebras and quotient algebras of g.

2. The vector space sum of ideals of g is a ideal of g.

Lemma 4. Let h be a subalgebra of codimension 1 in a nilpotent Lie algebra g. Then

h is an ideal; in fact, [g, g] ⊆ h.

Proof. Choose any X /∈ h; then g = h ⊕ RX as vector space. Since [X,X] = 0 and

[h, h] ⊆ h, it suffices to show that [X, h] ⊆ h. If not, we can find Y ∈ h with (as

Y )X = [Y,X] = αX + Y1, Y1 ∈ h and α 6= 0. By scaling Y , we may assume that

α = 1. Since [h, h] ⊆ h, induction gives,

(ad Y )nX = X + Yn, Yn ∈ h, n = 1, 2, . . .

If g is k-step nilpotent, this gives a contradiction for n ≥ k.

Theorem 6. (Engel’s Theorem). Let g be a Lie algebra and let α : g → gl(V ) be a

homomorphism such that α(X) is nilpotent for all X ∈ g. Then there exists a flag of

subspaces

(0) = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V, with dim Vj = j,

such that α(X)Vj ⊆ Vj−1 for all j ≥ 1 and all X ∈ g. In particular, α(g) is a nilpotent

Lie algebra.

Corollary 1. If g is a Lie algebra such that ad X is nilpotent for every X ∈ g, then

g is nilpotent.

8



1 Preliminaries

Proof. The map ad:g → gl(g) is a homomorphism, with kernel z(g). From 6, g =

g/z(g) is nilpotent. Suppose that g is k-step nilpotent. Then g(k+1) maps to 0 under

the projection of g on g. Hence g(k+1) ⊆ z(g), so that g(k+2) = (0).

Lemma 5. (Kirillov’s Lemma). Let g be a noncommutative nilpotent Lie algebra

whose center z(g) is one dimensional. Then g can be written as

g = RZ ⊕ RY ⊕ RX ⊕w = RX ⊕ g0,

a vector space direct sum, where

RZ = z(g), and [X, Y ] = Z;

g0is the centralizer of Y, and an ideal.

Examples

1. Define h, the (2n + 1)-dimensional Heisenberg algebra, to be the Lie algebra

with basis {X1, . . . , Xn, Y1 . . . , Yn, Z}, whose pairwise bracket is equal to zero

except for

[Xj, Yj] = Z, 1 ≤ j ≤ n.

It is a two-step nilpotent Lie algebra.

2. Define tn to be the (n + 1)-dimensional Lie algebra spanned by X, Y1 . . . , Yn,

with

[Yi, Yj] = 0, 1 ≤ i, j ≤ n,

[X, Yj] = Yj+1, 1 ≤ j ≤ n− 1,

[X, Yn] = 0.

This is an n−step nilpotent Lie algebra.

9



1 Preliminaries

3. nn is teh Lie algebra of strictly upper triangular n×n matrices. It is (n−1)-step

nilpotent algebra, of dimension n(n− 1)/2, and its center is one-dimensional.

1.4 Nilpotent Lie groups

For a detailed discussion on general Lie group theory, one should refer to [10]. The

following discussion is followed from [8].

Definition 10. A connected nilpotent Lie group is one whose Lie algebra is nilpotent.

For connected Lie groups, define descending central series to be

G(1) = G,G(j+1) = [G,G(j)]

where [H,K] is the subgroup generated by all commutators. Then G is said to

nilpotent if G(j) = (e) for some j.

Theorem 7. Let G be a (connected, simply connected) nilpotent Lie group, with Lie

algebra g.

1. exp : g→ G is analytic diffeomorphism.

2. The Campbell-Baker-Hausdorff formula holds for all X, Y ∈ g.

Corollary 2. Every connected Lie subgroup of Nn is closed and simply connected.

Every Lie subgorup H of a (connected, simply connected) nilpotent Lie group G is

closed and simply connected.

Proof. The first statement is immediate from the previous theorem. For the second,

embed g in nn. Under exp, H corresponds to its Lie algebra h, which is closed and

simply connected in nn.

10



1 Preliminaries

Corollary 3. Every (connected, simply connected) nilpotent Lie group has a faithful

embedding as a closed subgroup of Nn for some n.

The Theorem 7 allows coordinate transfer from g to G, since, exp is a diffeomor-

phism.

Examples

1. Let G = Hn, g = hn. We denote a typical element of hn by zZ +
∑n

j=1(xjXj +

yjYj) = (x, y, z), with x, y ∈ Rn and z ∈ R. Using the exponential coordinates

for Hn, we get

(x, y, z) ∗ (x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1

2
(x · y′ − y · x′)),

where x · y is the ususal inner product on Rn. Similarly,

(Adexp(x, y, z))(x′, y′, z′) = (x′, y′, z′ + x · y′ − y · x′).

Proposition 3. Let g be a nilpotent Lie algebra and let z be the center of g. Then

exp(z) is the center of G.

Proof. If Z is central in g and x = exp X ∈ G, then

x(exp Z)x−1 = exp((Adx)Z) = exp(eadX(Z)) = exp Z.

Hence exp Z is central.

Now suppose that y = exp Y is central in G. Then exp X · exp Y · exp(−X) =

exp Y, all X ∈ g, or exp(Ad(exp X)Y ) = y, all X ∈ g. Theorem 7 implies that

Y = Ad(exp X)Y = eadX(Y ), all X ∈ g. Replace X be tX, differentiate, and set

t = 0; we get [X, Y ] = 0, all X ∈ g. hence Y is central in g.

11



Chapter 2

Spherical Harmonic Analysis
In this chapter, we define a Gelfand Pair and study the important properties associ-

ated to them. Finally, we also introduce spherical Fourier transform and Plancherel-

Godement theorem. For further discussions and detailed proofs, refer to [2].

2.1 Gelfand pairs

Let G be a locally compact group and K be a compact subgroup of G.

Definition 11. Let f : G→ C be a function. We define f to be K-bi invariant if

f(k1xk2) = f(x) for all x ∈ G, k1, k2 ∈ K.

Consider K|G|K, the set of all double cosets of x ∈ G. Let F be any function

space over G.Then define

F \ = {f ∈ F|f is K-bi invariant}.

For example, Cc(G)\ = {f ∈ Cc(G)|f is K-bi invariant}.

Remark: Cc(G)\ = Cc(K|G|K).

Definition 12. We call (G,K), where K is compact subgroup of G, to be a Gelfand

pair if Cc(G)\ is commutative under convolution.

Equivalently, we can say that (L1(G))\ is a commutative Banach algebra under

convolution. Let f : G→ C be given. We define

f \(x) =

∫
K

∫
K

f(k1xk2) dk1 dk2,

whenever the integral is defined. Note that if f ∈ Cc(G) then f \ ∈ Cc(K|G|K).

12



2 Spherical Harmonic Analysis

Lemma 6. The mapping \ : L1(G) → L1(G) given by f 7→ f \ for all f ∈ L1(G) is

linear and

‖f \‖ ≤ ‖f‖

Proof. Linearity follows from the linearity of the integration. Let f ∈ L1(G) and ∆

be modular function on G. Then ∆|K is trivial and hence,∫
G

|f \|dx ≤
∫
K

∫
K

∣∣∣∣∫
G

f(k1xk2) dx

∣∣∣∣ dk1dk2

=

∫
G

|f(x)|dx.

Therefore, f \ ∈ L1(G) and ‖f \‖ ≤ ‖f‖.

If f is K-bi invariant function with f \ defined then f = f \.

Remark: The map \ : Lp(G)→ Lp(G), 1 ≤ p <∞ is idempotent, that is, (f \)\ = f \.

Also, If f, g are functions such that

〈f, g〉 =

∫
f(x)g(x)dx

is defined then the map \ : L2(G)→ L2(G) is self-adjoint, that is, 〈f \, g〉 = 〈f, g\〉.

Lemma 7. If f, g ∈ Cc(G)\ then f ∗ g ∈ Cc(G)\.

Proof. Let f, g ∈ Cc(G)\ then

(f ∗ g)(k1xk2) =

∫
G

f(k1xk2y)g(y−1)dy

=

∫
G

f(xy)g(y−1k2)dy

= (f ∗ g)(x).

As ∆|K is trivial, where ∆ is modular function on G.

Theorem 8. Suppose that θ : G → G is an continuous automorphism with θ2 = I,

satisfying,

x−1 ∈ Kθ(x)K ∀x ∈ G.

Then (G,K) is a Gelfand pair.

13



2 Spherical Harmonic Analysis

Proof. For f ∈ Cc(G), let f θ : G→ C be defined by f θ(x) = f(θ(x)). We claim that∫
G

f θ(x)dx =

∫
G

f(x)dx (2.1)

If Iθ(f) =
∫
G
f θ(x)dx then Iθ is Haar integral. Thus,

Iθ(xf) =

∫
G

f θ(xy)dy =

∫
G

f(θ(x)θ(y))dy.

Therefore, there exists a > 0, such that
∫
f θ(x)dx = a

∫
f(x)dx. Also, a2 = 1, since

Θ2 = I which implies that a = 1. If f is K-bi invariant,

f∨ = f(x−1) = f(k1θ(x)k2) = f(θ(x)) = f θ(x).

Let f, g ∈ Cc(G) then (using (2.1))

(f ∗ g)θ(x) =

∫
G

f(θ(x)y)g(y−1dy

=

∫
G

f(θ(x)θ(y))g(θ(y))−1dy

=

∫
G

f(θ(xy))g(θ(y−1)dy = (f θ ∗ gθ)(x)

Finally,

(g∨ ∗ f∨) = (f ∗ g)∨ = (f ∗ g)θ = (f θ ∗ gθ) = (f∨ ∗ g∨),

which implies that Cc(G) is commutative with respect to convolution.

2.2 Examples

Here we discuss few important examples of Gelfand pairs based on Theorem 8.

1. Let G = A o K, where A is Abelian, K is compact ang G is their semidirect

product. For v, v1, v2 ∈ A and k, k1, k2 ∈ K, define group operation as

(v1, k1)(v2, k2) = (v1 + k1v2, k1k2), (v.k)−1 = (−k−1v, k−1).

Then (−k−1v, k−1) = (0, k−1)(−v, k)(0, k−1) and by Theorem 8, (G,K) is Gelfand

pair.

14



2 Spherical Harmonic Analysis

2. Let Hn = {(z, t)|z ∈ Cn, t ∈ R} and K = U(n). K acts on Hn by

k · (z, t) = (kz, t).

Consider G = Hn oK and define θ : G→ G by

θ((z, t), k)) = ((z,−t), k).

Then ((z, t), k)−1 = k1(z,−t), k)k2 where k1 = −z and k2 = k−1k−1
1 k−1.

Let G be a Lie group.Suppose that θ is an involution on G such that there exist

a compact subgroup K of G and K ⊂ {x ∈ G| θ(x) = x}. Also, recall that the

derivative dθ : g→ g satisfies

θ(exp X) = exp(dθ(X)).

Theorem 9. If p = {X ∈ g| dθ(X) = −X} and, for all g ∈ G, there exist k ∈

K, X ∈ p such that g = k exp X. Then (G,K) is Gelfand pair.

Proof follows directly from Theorem 8.

3. Consider the Lie group G = SL(n,R) with g = {X|tr X = 0}. Define

θ(g) = (gt)−1

Hence, θ(g) = g ⇔ gt = g−1 ⇔ g ∈ SO(n). We have dθ(X) = −X t. Therefore,

p = {X ∈ g|dθ = −X} = {X ∈ g| −X t = −X}.

Take K = SU(n). Then, by Polar decomposition of matrices and previous

theorem, (G,K) is Gelfand pair.

Remark: If G is any connected semisimple Lie group then there exist Cartan invo-

lution θ, K = {g|θ(g) = g}. Hence, (G,K) is a Gelfand pair.
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2 Spherical Harmonic Analysis

Theorem 10. If (G,K) is a Gelfand pair then G is uni-modular.

Proof. Let f, g ∈ Cc(G)\. Since, f ∗ g(e) = g ∗ f(e), we have,∫
f(y)g(y−1)dy =

∫
g(y)f(y−1dy

⇒
∫

[f(y−1)∆(y−1)− f(y−1)]g(y)dy = 0

for all g ∈ Cc(G), as (f(y−1)∆(y−1) − f(y−1)) is K-bi invariant. This implies that

f(y−1)∆(y−1) = f(y−1). Hence, for any fixed y, choose f ∈ Cc(G)\, f(y−1) 6= 0. Then

∆(y−1) = 1, ∀y ∈ G, that is, G is uni modular.

2.3 Spherical functions

Definition 13. A continuous K-bi invariant function φ on G is called spherical if

χφ(f ◦ g) = χφ(f)χφ(g)

where

χφ(f) =

∫
G

f(x)φ(x−1)dx.

Notation: If function φ is clear from context then we denote χφ as χ.

Theorem 11. Suppose that φ is continuous, K-bi invariant function on G. Then

TFAE:

1. φ is spherical.

2. (Product formula)
∫
K
φ(xky)dk = φ(x)φ(y).

3. φ(e) = 1, φ ∗ f = χ(f)φ.

16



2 Spherical Harmonic Analysis

Proof. Let f, g ∈ Cc(G)\.

(1⇒ 2) Given, χ(f ∗ g) = χ(f)χ(g), then∫ ∫
f(xy)g(y−1)φ(x−1)dydx =

∫ ∫
g(y−1)f(x)φ(yx−1)dydx

=

∫ ∫
g(y)f(x)

∫
K

φ(y−1kx−1)dk dydx

=

∫ ∫
g(y)f(x)φ(y−1)φ(x−1)dydx

Hence, we get the product formula.

(2⇒ 3) Taking x = e = y in product formula, we get φ(e) = 1. Now,

φ ∗ f(x) =

∫
φ(xy)f(y−1)dy

= φ(x)

∫
φ(y)f(y−1)dy

= φ(x)

∫
f(y)φ(y−1)dy = χ(f)φ(x)

(3⇒ 1) By 3, we get φ ∗ f ∗ g = χ(f ∗ g)φ and χ(f)φ ∗ g = χ(f)χ(g)φ. Since, φ 6= 0,

as φ(e) = 1, we get χ(f ∗ g) = χ(f)χ(g). Hence, φ is spherical.

We recall that if f, g ∈ L1(G)\ then f ∗ g ∈ L1(G)\. If f ∈ L1(G)\, then define

f ∗(x) = f(x−1)

. If f is K-bi invariant then so is f ∗. Therefore, L1(G)\ is a Banach-*-algebra.

Moreover, since (G,K) is Gelfand pair, L1(G)\ is a commutative Banach-*-algebra.

Definition 14. Let A be a commutative algebra. A linear functional φ : A → C is

said to be complex homomorphism or multiplicative linear functional if

φ(xy) = φ(x)φ(y)

Let ∆(A) denote the set of all non-zero complex homomorphism.

17



2 Spherical Harmonic Analysis

Definition 15. Let G be a locally compact group. Any function φ : G→ C is said to

be positive definite if, for all n ∈ N and for all x1, . . . , xn ∈ G, the matrix

{
φ(x−1

i xj)
}
n×n

is positive semidefinite matrix.

Equivalently, for all α1, . . . , αn ∈ C,

∑
i,j

φ(x−1
i xj)αiαj ≥ 0.

Note that φ is Hermitian if φ(x∗) = φ(x) and bounded if |φ(x)| ≤ |φ(e)|, that is,

‖φ‖∞ = φ(e).

We digress here briefly, to find some motivation for the above definitions. Let G be

an Abelian group. Let K = {e}. Then L1(G)\ = L1(G) and L1(G) is commutative.

Hence, (G,K) is a Gelfand pair. Also, we note that

∆(L1(G)) = Ĝ = {χ|χ(xy) = χ(x)χ(y)}.

Here, the elements of ∆(L1(G)) are automatically positive definite. This is because:∑
αiαjχ(x−1

i xj) =
∑

αiαjχ(xi)χ(xj)

=

〈∑
j

αjχ(xj),
∑
i

αiχ(xi)

〉
≥ 0.

But in general, the elements of ∆L1(G)\ may not be positive definite. Hence, we will

consider the positive definite elements of ∆(L1(G)\).

Definition 16. Let (π,H) be any representation of G. Then define a closed subspace

HK = {ξ ∈ H|π(k)ξ = ξ, ∀k ∈ K}

containing the K-invariant vectors of H.

18
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Let PK =
∫
K
π(k)dk, that is,

〈PK(ξ), η〉 =

∫
K

〈π(k)ξ, η〉dk.

Then PK : H → HK that is, it is a projection. To see this, let ξ ∈ H which implies,

π(k0)PK(ξ) =

∫
K

π(k0k)ξdk =

∫
K

π(k)ξdk = PK(ξ),

as k0 ∈ K is arbitrary, PK(ξ) ∈ HK ,∀ξ ∈ H.

Remark: P 2
K = PK and P ∗K = PK .

Definition 17. A cyclic representation (π,H, ξ) of G is said to be spherical if:

1. The cyclic vector ξ is K-invariant.

2. HK is one dimensional.

Theorem 12. Let φ be a continuous, non-zero spherical function. Assume further

that φ is bounded. Then

χφ ∈ ∆(L1(G)\).

Conversely, if χ ∈ ∆(L1(G)\), that is, χ(f ∗g) = χ(f)χ(g) then there exists a bounded

function φ such that

χ = χφ and φ is spherical.

Lemma 8. Let (π,H) be any representation of G. Let ξ ∈ HK. Then the function φ

defined by φ(x) = 〈ξ, π(x)ξ〉 is K-bi invariant, positive definite function.

Proof. Let α1, . . . , αn ∈ C. Then, for any x1, . . . , xn ∈ G, we have∑
i,j

αiαjφ(x−1
i xj) = 〈

∑
αjπ(x−1

j )ξ,
∑

αiπ(x−1
i )ξ〉 ≥ 0.

As n ∈ N is arbitrary, φ is positive definite. Now, for any k1, k2 ∈ K,

φ(k1xk2) = 〈π(k−1
1 )ξ, π(x)π(k2)ξ〉

= 〈ξ, π(x)ξ〉 = φ(x)
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2 Spherical Harmonic Analysis

The following theorem gives a converse to the previous lemma.

Theorem 13. Suppose that φ is continuous, K-bi invariant positive definite function

on G. Then there exists a cyclic representation (πφ,Hφ, ξφ) satisfying the following:

1. ξφ ∈ HK and φ(x) = 〈ξφ, πφ(x)ξφ〉 ∀x ∈ G.

2. ξφ is a cyclic vector.

3. (Uniqueness) If there exists another cyclic representation (π,H, ξ) of G satisfy-

ing (1) and (2) then there exists a unitary operator T : Hφ → H satisfying:

T (ξφ) = ξ and T ◦ πφ(x) = π(x) ◦ T, ∀x ∈ G.

Lemma 9. Suppose that (π,H, ξ) be a cyclic representation of G with ξ ∈ HK. If

dim(HK) = 1, that is, (π,H, ξ) is spherical then π is irreducible.

Proof. Let H ⊂ H be π-invariant subspace of H. Let P : H → H be a projection.

Then P commutes with π(x),∀x ∈ G. This implies,

π(k)(Pξ) = P (π(k)ξ) = P (ξ) ∀k ∈ K,

that is, Pξ ∈ HK . Since, dim(HK) = 1, P (ξ) = αξ, for some α ∈ C. If α = 0, then

Pξ = 0, that is ξ ∈ H⊥. Also, H⊥ is π-invariant. Hence, π(f)ξ ∈ H⊥,∀f ∈ L1(G).

As ξ is cyclic, we have, H ⊂ H⊥ giving H = 0.

Let α 6= 0, then ξ is in the range of P , that is, ξ ∈ H. Then proceeding as above we

get, H = H.

Lemma 10. Suppose that (G,K) is a Gelfand pair.Let (π,H) be an irreducible rep-

resentation of G. Then dim(HK) ≤ 1.
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Proof. Consider π\ : L1(G)\ → BL(HK) by

π\(f) = π(f)|HK .

Then π\ is a *-representation of the Banach algebra L1(G)\. We claim that (π\,HK)

is irreducible. Let HK = K1 ⊕K2, where K1, K2 are π\ invariant subspaces of HK .

Let 0 6= ξ ∈ K1 and observe that {π(f)ξ|f ∈ L1(G)} is dense in H, as π is irreducible.

We prove K2 = 0 by showing that

〈π(f)ξ, η〉 = 0, ∀η ∈ K2 and f ∈ L1(G).

If f ∈ L1(G), η ∈ K2,

〈π(f)ξ, η〉 = 〈π(f \ξ, η〉 = 0,

because ξ, η ∈ HK and π(f \) = π\(f) ⇒ π(f \(ξ) ∈ K1. Therefore, K2 = 0 and

K1 = HK , which gives (π\,HK) to be an irreducible representation. Since, L1(G)\ is

commutative, by Schur’s lemma, we get

dim(HK) = 1.

Theorem 14. Let (G,K) be a Gelfand pair. Let φ be a continuous, K-bi invariant

positive definite function. Let (πφ,Hφ, ξφ) be the associated cyclic representation with

ξφ ∈ HK. Then φ is spherical with φ(e) = 1 if and only if πφ is irreducible.

Proof. Assume φ to be spherical. Now, HK 6= 0. It is enough to show that the

dim(HK) ≤ 1 (because of Lemma 9 and φ(e) = 1). Consider the projection,

PK =

∫
K

π(k)dk,
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2 Spherical Harmonic Analysis

whose range is HK . We claim that ∀f ∈ L1(G)\, π(f)ξφ = χ(f)ξφ where, χ(f) =∫
f(x)φ(x−1)dx. We first note that

π(f)(ξφ) =

∫
G

f(y)(π(y)ξφ)dy.

Hence,

〈π(f)ξφ, π(x)ξφ〉 =

∫
G

f(y)〈π(y)ξφ, π(x)ξφ〉dy

=

∫
G

f(y)〈ξφ, π(y−1x)ξφ〉dy

=

∫
G

f(y)φ(y−1x)dy

=

∫
G

f(y)φ(y−1kx)dy (∵ f ∈ L1(G)\)

= φ(x)

∫
G

f(y)φ(y−1)dy = χ(f)φ(x)

= χ(f)〈ξφ, π(x)ξφ〉

= 〈χ(f)ξφ, π(x)ξφ〉.

(2.2)

Since, the closure of π(x)ξφ, x ∈ G spans H, we have,

π(f)ξφ = χ(f)ξφ. (2.3)

If f ∈ L1(G) then, by equation (2.3),

PK(π(f)ξφ) = π(f \)(ξφ) = χ(f \)ξφ.

Since, ξφ is cyclic, PK(H) is linear space spanned by ξφ.

Conversely, let πφ be irreducible. Then by Lemma 10, dim(HK) ≤ 1. Since ξφ ∈ HK ,

dim(HK) = 1 and is spanned by ξφ. As πφ is irreducible, we proceed as in Lemma

10, and get that

π\φ : L1(G)\ → BL(HK)

is a complex homomorphism, as HK is one dimensional. There exists χ : L1(G)\ → C

such that χ(f ∗ g) = χ(f)χ(g) and

π\(f)(ξφ = χ(f)ξφ.
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In particular, as φ(e) = 1, 〈ξφ, ξφ〉 = 1. Therefore,

χ(f) = 〈χ(f)ξφ, ξφ〉

=

∫
G

f(x)〈π(x)ξφ, ξφ〉dx

=

∫
G

f(x)φ(x−1)dx = χφ(f).

Hence, φ is spherical.

2.4 Spherical Fourier transform

Let φ be a continuous K-bi invariant function on G. Furthermore, assume that φ is

spherical function. Then define the following space:

Ω =
{
φ ∈ ∆(L1(G)\) | φ is positive definite and φ(e) ≤ 1

}
.

Note that Ω $ ∆(L1(G)\).

Definition 18. Let f ∈ L1(G)\ then

∀φ ∈ ∆(L1(G)\), f̂(φ) =

∫
G

φ(x−1)f(x)dx.

The f̂ is said to be the spherical Fourier transform of f .

If G is locally compact Abelian group with K = {e} then this is precisely the

Fourier transform in G. We should note here that, for a locally compact Abelian

group, the Gelfand transform and Fourier transform coincide. Hence, to make this

case for a general Gelfand pair, the spherical Fourier transform is defined on ∆(L1(G)\)

instead of Ω.

Since, f̂ is a Gelfand transform, we have f̂ ∈ C(∆(L1(G)\)) and {f̂ |f ∈ L1(G)\} is

dense in C(∆). We also have,

(f ∗ g)∧(φ) = χφ(f ∗ g)

= χφ(f)χφ(g) = f̂(φ)ĝ(φ).
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Remark: ∆(L1(G)\) is a locally compact space with respect to weak-*-topology.

Hence, Ω is also a locally compact space.

Before proceeding further, let us recall the definition of extreme points and few re-

marks related to it.

Definition 19. Let K be a convex set. Then x ∈ K is an extreme point if there exists

y1, y2 ∈ K such that

x = λy1 + (1− λ)y2, 0 ≤ λ ≤ 1,

then x = y1 = y2.

Denote the set of extreme points of K as Ext(K).

Remark: Let X be any locally compact space. Define

M+
1 (X) = {µ | µ is regular Borel measure, µ ≥ 0, µ(X) ≤ 1}.

Then the Dirac measures, δx ∈M+
1 (X) and Ext(M+

1 (X)) = {δx|x ∈ X}.

Theorem 15. Let G be a locally compact group. Let

P1(G) = {φ | φ is continuous, positive definite and φ(e) ≤ 1}.

Then Ext(P1(G)) = {φ ∈ P1(G) | πφ is irreducible}.

Now, let µ ∈M+
1 (Ω), the define:

µ∨(x) =

∫
Ω

ω(x)dµ(ω).

Lemma 11. Let φ ∈ P1(G)\ Then there exists µ ∈M+
1 (Ω) such that

µ∨(x) = φ(x), ∀x ∈ G.
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Proof. If δω0 denote the point measure at ω then

(δω0)
∨(x) =

∫
Ω

ω(x)δω0(ω) = ω0(x).

Observe that the ∨ : M+
1 (Ω)→ L∞(G) is continuous with respect to weak-*-topology.

It is due to 〈f, µ∨α〉 = 〈f̂ , µα〉 → 〈f̂ , µ〉 = 〈f, µ∨〉 as µα → µ, ∀f ∈ L1(G). Also,

M+
1 (Ω) is weak-*-compact and is weak-*-closed convex hull of {δω|ω ∈ Ω} by Krein-

Milman theorem.

Therefore the range of M+
1 (Ω) under the above map is w-*-compact in L∞(G). Since,

Ω is the set of extreme points for P1(G)\. The image contains the w-*-closed convex

hull of Ω(= P1(G)\). Hence, the map ∨ : M+
1 (Ω) → L∞(G) is onto. Therefore, if

φ ∈ P1(G)\, there exists µ ∈M+
1 (Ω) such that µ∨ = φ.

We call µ∨ to be inverse Fourier transform of µ.

Remark: The above measure is unique. For∫
Ω

f̂(ω)dµ(ω) =

∫
Ω

∫
G

f(x)ω(x−1)dx dµ(ω) =

∫
G

f(x)φ(x−1)dx, ∀f ∈ Cc(G)\.

Therefore, if µ∨1 = φ = µ∨2 then
∫

Ω
f̂(ω)dµ1(ω) =

∫
Ω
f̂(ω)dµ2(ω), for all f ∈ Cc(G)\.

This implies µ1 = µ2, as Cc(G)\ is dense in C(∆).

Notation: For convenience, the µ appear in the previous theorem will be denoted

by µφ, that is, µ∨φ = φ.

Lemma 12. Assume that f, g ∈ L1 ∩ P1)(G)\. Then

f̂dµg = ĝdµf .

Proof. We claim that ∀h ∈ L1(G)\,∫
ĥf̂dµg =

∫
ĥĝdµf .

25



2 Spherical Harmonic Analysis

Consider ∫
Ω

ĥdµf =

∫
G

∫
Ω

ω(x−1)dµfdx

=

∫
G

f(x−1)h(x)dx = (h ∗ f)(e).

In particular, ∫
Ω

ĥĝdµf = ((h ∗ g) ∗ f)(e)

= ((h ∗ f) ∗ g)(e)

=

∫
Ω

ĥf̂dµg.

Since, L1(G)\ is dense in C(Ω), we get the lemma.

Lemma 13. Suppose that H ⊂ Ω is compact. Then there exists f ∈ (L1 ∩ P1)(G)\

such that

f̂|H > 0.

Proof. Let ω ∈ Ω be fixed. Then if h ∈ Cc(G)\ such that ĥ = 1, take g = h∗ ∗ h.

This implies, g ∈ (L1 ∩ P1)(G)\ and ĝ(ω) = 1. Thus, for all ω ∈ H, there exists a

neighbourhood Vω and gω such that gω ∈ (L1 ∩ P1)(G)\ and

ĝω |Vω > 0.

Since, H is compact, there exist ω1, . . . ωn such that

H ⊂ ∪ni=1Vωi and ĝωi > 0.

Take f =
∑n

i=1 gωi then we get the lemma.

Theorem 16. There exist a Radon measure σ on Ω satisfying the following:

If f ∈ (L1 ∩ P1)(G)\, then f̂ ∈ L1(Ω, dσ) and

dµf = f̂dσ. (2.4)
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Proof. We shall define a functional I on Cc(Ω) by

I(ψ) =

∫
Ω

ψ(ω)

f̂(ω)
dµf (ω),

where f̂(ω) > 0 ∀ω ∈ Supp(ψ). It exists because of Lemma 13. We show that I is

well-defined, that is, it does not depend on f . Hence, suppose that there exists g such

that ĝ > 0 on Supp(ψ). Then∫
Ω

ψ(ω)

ĝ(ω)
dµg(ω) =

∫
Ω

ψ(ω)

f̂(ω)ĝ(ω)
f̂(ω)µg(ω)

=

∫
Ω

ψ(ω)

f̂(ω)ĝ(ω)
ĝ(ω)µf (ω) [∵ of Lemma 12]

=

∫
Ω

ψ(ω)

f̂(ω)
dµf (ω).

Also, I is non-zero.Then for some g ∈ (L1 ∩ P1)(G)\,

I(ĝψ) =

∫
ĝ(ω)

ψ(ω)

f̂(ω)
dµf (ω)

=

∫
f̂(ω)

ψ(ω)

f̂(ω)
dµg(ω)

=

∫
ψ(ω)dµg(ω) 6= 0.

Therefore, I 6= 0, I is linear, ∀ψ > 0, I(ψ) ≥ 0, that is, I is a positive linear

functional. Hence, by Riesz representation theorem, there exists a Radon measure σ

on Ω such that

I(ψ) =

∫
Ω

ψ(ω)dσ(ω), ∀ψ ∈ Cc(Ω).

Let f ∈ (L1 ∩ P1(G))\, we claim equation (2.4). ∀ψ ∈ Cc(Ω),

I(ψf̂) =

∫
Ω

ψf̂

ĝ
dµg, where ĝ|Supp(ψf̂) > 0

=

∫
ψ

ĝ
ĝdµf =

∫
Ω

ψdµf .

Therefore, ∫
Ω

ψf̂dσ(ω) =

∫
Ω

ψdµf , ∀ψ ∈ Cc(Ω).

Hence, the equation (2.4).
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We note that if µ is a measure on Ω, then it can be realised as a function if µ∨ is

integrable function on G, that is, µ∨ ∈ L1(G) and

µ = (µ∨)∧dσ.

Remark: By equation (2.4), we get∫
Ω

ω(x)f̂(ω)dσ(ω) =

∫
ω(x)dµf = f(x),

which is Fourier inversion formula for f ∈ (L1 ∩ P1)(G)\.

Theorem 17. (Plancherel Theorem) Let σ be as above. Then

1. The Fourier transform ∧ is an isometry from (L1 ∩ L2)(G)\ → L2(Ω, dσ).

2. The isometry gets extended to a unitary isomorphism from L2(G)\ onto L2(Ω, dσ).

Proof. Let f ∈ (L1 ∩ L2)(G)\. Consider g = f ∗ f ∗. Then g ∈ (L1 ∩ P1)(G)\ and by

previous remark:

g(e) =

∫
Ω

ω(1)ĝ(ω)dσ(ω),

which implies, ∫
G

|f(x)|2dx =

∫
Ω

|f̂(ω)|2dσ.

Hence, (1) is proved.

To prove (2), it is sufficient to show that {f̂ |f ∈ (L1∩L2)(G)\} is dense in L2(Ω, dσ).

Suppose that ψ ∈ Cc(Ω) such that

〈ψ, f̂〉 = 0, ∀f ∈ (L1 ∩ L2)(G)\

then we are done if we prove that ψ = 0. Now, this implies

I(ψf̂) = 0, ∀f ∈ (L1 ∩ L2)(G)\,
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which in turn implies that I(ψ(xf)∧) = 0, ∀x ∈ G. But

(xf)∧(ω) = ω(x)f̂(ω). (2.5)

This is because

(xf)∧(ω) =

∫
ω(y−1x)f(y)dy =

∫
G

∫
K

ω(y−1kx)f(y)dk dy = ω(x)f̂(ω).

Since, ψ ∈ Cc(Ω), f̂ ∈ L2(Ω) implies ψf̂ ∈ L1(Ω) and,∫
ω(x)(ψf̂)(ω)dσ(ω) = 0.

By the uniqueness of inverse Fourier transform,

(ψf̂)(ω) = 0, ∀ω ∈ Ω, ∀f ∈ (L1 ∩ L2)(G)\.

But by Lemma 13, there exists f ∈ (L1 ∩ P1)(G)\ such that f̂|Supp(ψ)
6= 0. Hence,

ψ(ω) = 0, ∀ω ∈ Ω.

Therefore, the theorem.

Theorem 18. (Fourier inversion formula) Let f ∈ Cc(G)\ and f̂ ∈ L1(Ω) then

f(x) =

∫
f̂(ω)ω(x)dσ(ω).

Remark: There are Gelfand pairs (G,K) such that

Supp(dσ) $ Ω $ ∆(L1(G)\).

We will consider Heisenberg motion group with U(n) as a concrete example of Gelfand

pair and will study it in detail.

29



Chapter 3

Heisenberg group
Let us recall that Heisenberg group is given by

Hn = {(z, t)|z ∈ Cn, t ∈ R},

with the group operation:

(z, t)(w, s) =

(
z + w, t+ s+

1

2
Im(zw)

)
.

3.1 Representations which are trivial on center

Let (π,H) be an irreducible unitary representation of H1 such that π(exp(zZ) = Id.

Define a representation (π,H) of G = G/[G,G] = (G/exp([g, g]) = G/exp(RZ)) as

follows:

π ◦ p(g) = π(g)

for all g ∈ G and p is canonical projection. Then it is easy to see that π is irreducible

as π is irreducible. As G is Abelian, we conclude that π and therefore π is of one

dimension, that is, a character.

Let g denote the Lie algebra of G. Then g ∼= RX ⊕ RY . Being a two dimensional

nilpotent Lie algebra, g ∼= R2, and hence G ∼= R2. Thus, there exists (α, β) ∈ R2 such

that

π(x, y, z) = π ◦ p((x, y, z)) = e2πi(αx+βy) = π(α,β)(x, y, z).

We have hence shown that any irreducible unitary representation π if H1, which is

trivial on its center is one-dimensional and is of the form describe above. Conversely,
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given (α, β) ∈ R2, defining π(α,β) as above gives us a one dimensional representation

of H1.

3.2 Representations which are non-trivial on cen-

ter

Let χ be a non-trivial irreducible unitary representation of exp(RZ) ⊆ H1. As

exp(RZ) ∼= R), χ is of the form

χ(exp(zZ)) = χλ

where λ 6= 0.

Let l = RY ⊕ RZ. Let K = exp(l). We define a representation ρ of K on C by

ρ(exp(yY + zZ) = ρ(0, y, z) = χλ(z) = e2πiλz).

Next, we induce ρ from K to H1 to get a representation πλ = Ind(K ↑ G, ρ). As

G/K ∼= exp(RX) ∼= R, πλ can be visualised as acting in L2(R)(this is because the

Lebesgue measure in R gets transferred to a G−(right) invariant measure on G/K).

πλ acts on f ∈ L(R) as under:

πλ(x, y, z)f(t, 0, 0) = f((t, 0, 0)(x, y, z))

= f(x+ t, y, z +
ty

2
)

= f((0, y, z + ty +
xy

2
)(x+ t, 0, 0))

= ρ(0, y, z + ty +
xy

2
)f(x+ t, 0, 0)

= e(2πiλ(z+ty+xy
2

))f(x+ t)

In order to prove that πλ is irreducible, we would need a few notions from harmonic

analysis.

Definition 20. Let φ ∈ L∞(R). Then, we define Mφ : L2(R)→ L(R) by

Mφ(f) = φf.
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Definition 21. Let T ∈ BL(L2(R)). We define an operator T̂ as under:

T̂ (f̂) = T̂ (f) for all f ∈ C∞c (R).

It follows from the Plancheral Theorem that T̂ hence define is continuous. Using

the density of C∞c (R) in L2(R), we can extend its domain of definition to all of L2(R).

Definition 22. Let x ∈ R. The translation operator Λx : L2(R) → L2(R) is defined

to be

Λxf(t) = f(t− x)

for all t ∈ R.

Lemma 14. T ∈ BL(L2(R)). Suppose that T commutes with translations,i.e, TΛx =

ΛxT for all x ∈ R. Then, there exists φ ∈ L∞(R) such that

T̂ = Mφ.

Proof. Given f ∈ L1(R), we can define an operator Λf ∈ BL(L2(R)) given by

Λf (g) = f ∗ g

for all g ∈ L2(R). Since T commutes with translations, it can be easily checked that

T also commutes with Λf for all f ∈ L1(R). In particular, let f, g ∈ C∞c (R). Then,

f ∗ T (g) = Λf (T (g))

= T ◦ Λf (g)

= T (f ∗ g)

= T

(∫
R
g(y)Λxf dy

)
=

(∫
R
g(y)T ◦ Λx(f) dy

)
=

(∫
R
g(y)Λx ◦ T (f) dy

)
= T (f) ∗ g
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Applying Fourier transform to both sides, we get

f̂ · (̂Tg) = T̂ f · ĝ

Now for all ζ ∈ R, there exists f ∈ C∞c (R) such that f̂(ζ) 6= 0. We define

φ(ζ) =
T̂ f(ζ)

f̂(ζ)

Then clearly φ is well defined. It follows from the definition of φ that

T̂ (f) = T̂ f = φf̂ = Mφ(f̂)

for all f ∈ C∞c (R), and consequently for all f ∈ L2(R). We claim that

‖ φ ‖∞≤‖ T ‖ .

For, if not, then by regularity of the Lebesgue measure µ, there exists a compact set

K of non-zero measure such that for all x ∈ K

|φ(x)| ≥‖ T ‖ +δ,

for some δ > 0. Again, using the regularity of the Lebesgue measure, we obtain an

open set U such that K ⊆ U and

µ(U) < µ(K)

(
1 +

δ

2 ‖ T ‖

)2

.

Let f ∈ L1(R) such that 0 ≤ f̂ ≤ 1, f̂|K = 1 and Supp(f̂) ⊆ U . Let 1K denote the

characteristic finction for K. Then,

‖ φ1K ‖2≤‖ T ‖‖ f̂ ‖2≤‖ T ‖ µ(U)
1
2 .

On the other hand,

‖ φ1K ‖2≥ (‖ T ‖ +δ)µ(K)
1
2 .
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From th eabove two equations, it follows that

µ(U) ≥ µ(K)

(
1 +

δ

2 ‖ T ‖

)2

.

We thus arrive at a contradiction.

Theorem 19. Let (πλ, L
2(R)) be a representation of H1 given by

πλ(x, y, z)f(t) = e(2πiλ(z+ty+xy
2

))f(x+ t)

Then, πλ is irreducible.

Proof. Without loss of generality, we may assume λ = 1. Let T ∈ BL(L2(R)) such

that T ◦ πλ(g) = πλ(g) ◦ T for all g ∈ H1. In particular, T ◦ πλ(x, 0, 0) = πx,0,0(g) ◦ T

for all x ∈ R. Since πλ(x, 0, 0) = Λx, implies that there exists φ ∈ L∞(R) such that

T̂ = Mφ.

Also, as T ◦πλ(0, y, 0) = πλ(0, y, 0)◦T for all y ∈ R, we conclude that T ◦χy = χy ◦T

(where χyh(t) − e2πiyth(t)) for all y ∈ R and for all h ∈ L2(R). For all f ∈ C∞c (R),

we have

(Λ−ζ0 f̂)(ζ) = f̂(ζ0 + ζ)

=

∫
R
f(x)e(−2πiζ0x)e(−2πiζx)dx

= ̂(χ−ζ0f)(ζ)

Thus, for all ζ, ζ0 ∈ R and for all f ∈ C∞c (R),

φ(ζ)(Λ−ζ0 f̂)(ζ) = φ(ζ) ̂(χ−ζ0f)(ζ)

= ̂(T (χ−ζ0f))(ζ)

= ̂(χ−ζ0(Tf))(ζ)

= (̂T (f))(ζ + ζ0)

= φ(ζ + ζ0)f̂(ζ + ζ0)

= φ(ζ + ζ0)(Λ−ζ0 f̂)(ζ).
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Hence, φ(ζ) = φ(ζ + ζ0) for all ζ, ζ0 ∈ R. In other words, φ is a constant, say

φ ≡ c(∈ C). We conclude that T̂ = cI, and thus, T = cI. Schur’s lemma then implies

that πλ is irreducible.

3.3 Stone-von Neumann theorem

The representations of H1 are a consequence of the Stone-von Neumann theorem.

Determining the infinite-dimensional representations og H1 is equivalent to proving

this theorem. For further discussion refer to [8].

Theorem 20. (Stone-von Neumann). Let ρ1, ρ2 be two unitary representation of

G = R in the same Hilbert space H satisfying the covariance relation

ρ1(x)ρ2(y)ρ1(x)−1 = e2πiλxyρ2(y), for all x, y ∈ R(λ 6= 0). (3.1)

Then H is a direct sum H = H1 ⊕ H2 ⊕ · · · of subspaces that are invariant and

irreducible under the joint action of ρ1 and ρ2. For each Hk there is an isometry

Jh : Hk → L2(R) which transforms ρ1 and ρ2 to the ’canonical’ actions on L2(R):

[ρ1(x)f ](t) = f(t+ x), [ρ2(y)f ](t) == e2πiλytf(t)

For each λ 6= 0 the canonical pair ρ1, ρ2 acts irreducibly on L(R), so ρ1, ρ2 act irre-

ducibly on each Hk.

Before proving the Ston-von Neumann theorem, we shall prove the following the-

orem first.

Theorem 21. Let π be a unitary representation of separable locally compact group

G, and let φ be a *-representation of Cc(G) on the same Hilbert space Hπ. Suppose

that
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(i) πxφ(h)πx−1 = φ(Rxh), for all x ∈ G, h ∈ Cc(G),

(ii) φ(h)(ξ) = 0 all h ∈ Cc(G)⇒ ξ = 0 in Hπ.

Then Hπ splits into a direct sum H1⊕H2⊕· · · of subspaces invariant under the joint

action of G and Cc(G) such that the action on each Hk is isomorphic to canonical

system Hk = L2(G) under an isometry carrying πx to Rx and φ(h) to M(h).

Proof. Given ξ ∈ Hπ and k ∈ Cc(G), define

Aξ,k(h) =

∫
g

φ(h)πxφ(k)ξdx, for all h ∈ Cc(G) ⊆ L2(G),

=

∫
G

φ(h)φ(Rxk)πxξdx

=

∫
g

φ(h ·Rxk)πxξdx.

If K ⊆ G is compact and contains supp(k), then h ·Rxk = 0 unless x ∈ K−1supp(k);

thus the integrand has compact support and the integral is well defined. Moreover,

there is a constant Ck such that ‖A(h)‖ ≤ Ck‖h‖∞‖ξ‖ if supp(h) ⊆ K. The inter-

twining property is easily checked:

A(M(h1)h) = A(h1h) =

∫
φ(h1h)πxφ(k)ξdx

= φ(h1)A(h);

A(Rxh) =

∫
φ(Rxh)πyφ(k)ξdy =

∫
πxφ(h)πx−1yφ(k)ξdy

=

∫
πxφ(h)πyφ(k)ξdy = πxA(h).

Suppose that A = Aξ,k is not identically zero. Then for f, h ∈ Cc(G),

〈Af,Ah〉 =

∫ ∫
〈φ(fh)πxφ(k)ξ, πyφ(k)ξ〉dx dy.

The right hand side of this formula depends on fh.Since, every F ∈ Cc(G) can be

written as F = fh, it determines a linear functional δ on Cc(G) such that δ(F ) =
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〈Af,Ah〉 whenever F = fh. Since A 6= 0, δ is nonzero and is the integral of F against

a scalar multiple of right Haar measure. That is, there exists c > 0 such that

‖Af‖2 = c2‖f‖2
2

and T = c−1A extends to an intertwining isometry mapping L2(G) to a closed sun-

space H1 ⊆ Hπ invariant under π and φ. Apply this construction repeatedly, starting

with H⊥1 and continuing to decompose Hπ into canonical systems. To show there are

nonzero Aξ,k, fix ξ 6= 0 and define

A′F =

∫
φx(F (x, xy))πyξdy

where F ∈ Cc(G × G) and φx() is φ applied to x → F (x, xy). If F = f ⊗ h for

f, h ∈ Cc(G),we have

A′(f ⊗ h) =

∫
φx(f(x)Ryh(x))πyξ dy

=

∫
φ(f)φ(Ryh)πyξ dy = Aξ,h(f).

Moreover, ifK ⊆ G is compact, there is a constant CK such that ‖A′F‖ ≤ CK‖F‖∞‖ξ‖

if supp(F ) ⊆ K ×K since the integrand is zero unless y ∈ K−1K.

Now, if Aξ,h(f) = 0 for all f, h ∈ Cc(G), the A′ would annihilate all f ⊗ h and hence

all linear combinations of such functions. Given F ∈ Cc(G× G), there is a compact

K ⊆ G such that supp(F ) is in the interior of K × K. By Stone-Weierstrass, F is

a uniform limit of sums of functions f ⊗ h supported in K ×K. Therefore it would

follow that A′F = 0 for all F ∈ Cc(G × G). In particular, if F (x, y) = h(x−1y)k(x)

we would conclude that

0 = A′F =

∫
h(y)φ(k)πyξ dy = φ(k)

∫
h(y)πyξ dy.

Let h run through an L1-approximate identity in Cc(G); then the right hand integral

converges to φ(k)ξ. Choose k so that φ(k)ξ 6= 0; we get a contadiction.
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We now proceed to the proof of Theorem 20.

Proof. (Proof of Theorem 20): We work with λ = 1. We first show that the covari-

ance relation 3.1 can be put in more general form. By Stone’s theorem, any unitary

representation of R can be realised as an integral involving the one-dimensional char-

acters χu ∈ R̂, χu(t) = e2πiut. There is a σ-additive projection valued measure in

R ≈ R̂ whose values are projections in H such that

ρ2(x) =

∫
R
χu(x)E(du), for all x ∈ R.

Using E we may define bounded operators E(f) on H for any bounded, measurable

function f on R:

E(f) =

∫
R
f(u)E(du). (3.2)

Obviously,

‖E(f)‖ ≤ ‖f‖∞ = sup{|f(u)| : u ∈ R}.

Applying this map to a character f = χx(x ∈ R) we get

E(χx) =

∫
R
χx(u)E(du) =

∫
R
e2πixuE(du) =

∫
R
χu(x)E(du) = ρ2(x)

for all x ∈ R. Our covariance relation 3.1 may be rewritten as

ρ1(x)E(χy)ρ1(x−1) =

∫
χy(u+ x)E(du) = E(Rxχy) (3.3)

where Rxis right translation by x : Rxf(t) = f(t+ x). From this we get a covariance

relation involvong E:

ρ1(x)E(f)ρ1(x−1) = E(Rxf) for all f ∈ Cc(R). (3.4)

We can check that (3.4) is true for f , that is a linear combination of characters χy.

Now, we shall analyse the consequences of covariance relation (3.4). Let G be an
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arbitrary separable locally comapct group. Let G be any such that group. Then G

acts on L2(G) by translation

Rxf(g) = f(gx), x ∈ G, f ∈ L2(G), (3.5)

and Cc(G) acts on L2(G) by multiplication

M(h)f(g) = h(g)f(g), h ∈ Cc(G), f ∈ L2(G).

We refer to these paired actions of G on L2(G) as the canonical system for G. They

satisfy the covariance relation

RxM(h)Rx−1 = M(Rxh), for all x ∈ G, h ∈ Cc(G).

Furthermore the joint action is always irreducible; there is no proper closed subspaces

of L2(G) invariant under the action of all operators {Rx,M(h)}. If not, there exists

f, g 6= 0 in L2(G) such that 〈M(h)Rxf, g〉 = 0, or 〈Rxf,M(h)g〉 = 0, all x ∈ G, h ∈

Cc(G). There are sets S1, S2 ⊆ G of positive measure such that the values of f|S1 , g|S2

lie in one quadrant of the complex plane. By regularity of Haar measure, we can take

the Si to be compact. There is an x such that |S1x ∩ S2| > 0, hence∫
S1x∩S2

Rxf(y)g(y)dy =

∫
Rxf(y)χS1x∩S2(y)g(y)dy 6= 0

where χS = 1 on S and zero elsewhere. If we approximate χS1x∩S2 by functions

0 ≤ h ≤ 1 in Cc(G), there must be an h such that 〈Rxf,M(h)g〉 6= 0, a contradiction.

Now, using Theorem 21 and in view of covariance relation (3.4) we can decompose

H = ⊕∞i=1Hi with each Hi isomorphic to L2(R), on which ρ1(x) is realized as Rx and

E(f) as M(f). By taking strong operator limits we see that ρ2(y) = E(χy) is realised

as M(χy). Hence, proving theorem 20.
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3.4 The Fourier-Wigner Transform

For detailed proofs regarding this section and the following sections of this chapter,

one may refer to [7]. Here we study the matrix coefficients of representation π. If

(f, g) ∈ L2(Rn), the matrix coefficient of π at (f, g) is the function M on Hn defined

by

M(x, y, z) = 〈π(x, y, z)f, g〉.

Clearly M(x, y, z) = e2πizM(x, y, 0), so the z dependence carries no information. We

define the function V (f, g) on R2n by

V (f, g)(x, y) = 〈π(x, y)f, g〉 =

∫
e2πiyt+πixyf(t+x)g(t)dt =

∫
e2πiysf(s+

1

2
x)g(s− 1

2
x)ds.

(3.6)

Definition 23. We define the map V as Fourier-Wigner transform.

Remark: By Schwarz inequality, V (f, g) is always bounded, continuous function

on R2n satisfying ‖V (f, g)‖∞ = ‖f‖2‖g‖2.

V can be extended from a sesquiliniear map defined on L2(Rn)× L2(Rn) to a linear

map V ′ defined on the tensor product L2(Rn)⊗L2(Rn), which is naturally isomorphic

to L2(R2n). That is, if F ∈ L2(R2n) we define

V ′(F )(x, y) =

∫
e2πiysF (s+

1

2
x, s− 1

2
x)ds.

We then have V (f, g) = V ′(f⊗g), where f⊗g(t, s) = f(t)g(s). V ′ is the composition

of the measure preserving change of variables with inverse Fourier transformation in

the first variable. Therefore it is unitary on L2(R2n), maps S(R2n) onto itself, and

extends to a continuous bijection of S ′(R2n) onto itself. Thus we obtain the following:

Theorem 22. V maps S(Rn) × S(Rn) into S(R2n) and extends to a map from

S ′(Rn) × S ′(Rn) into S ′(R2n). Moreover, V is sesqui-unitary on L2; that is, for
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all f1, f2, g1, g2 ∈ L2(Rn),

〈V (f1, g1), V (f2, g2)〉 = 〈f1, f2〉〈g1, g2〉.

Here is what happens to V (f, g) when f and g are transformed by the operators

π(a, b)

Proposition 4. For any a, b, c, d ∈ Rn we have

V (π(a, b)f, π(c, d)g)(p, q) = eπi(dp+da+pb−cq−cb−qa)V (f, g)(p+ a− c, q + b− d).

Proof. We have

V (π(a, b)f, π(c, d)g)(p, q) = 〈π(−c,−d)π(p, q)π(a, b)f, g〉

and in Hn

(−c,−d, 0)(p, q, 0)(a, b, 0) = (p+ a− c, q + b− d, 1

2
(dp+ da+ pb− cq − cb− qa)).

The given equation follows from these equations.

3.5 Plancherel measure on Hn

If G is a locally compact group, let Ĝ denote a collection of irreducible unitary

representations of G containing exactly one member of each equivalence class. If

π ∈ Ĝ we denote by Hπ the Hilbert space on which π acts. Given f ∈ L1(G) and

π ∈ Ĝ, we define the operator f̂(π) on Hπ by

f̂(π) =

∫
G

f(x)π(x)∗dx =

∫
G

f(x)π(x−1)dx,

where dx denotes the Haar measure. The map f → f̂ is called the group Fourier

transform. For a large class of groups G there exists a measure µ on Ĝ(the Plancherel
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measure) such that for all sufficiently nice functions f on G one has the Fourier

inversion formula

f(x) =

∫
Ĝ

tr(f̂(π)π(x))dµ(π) (3.7)

and the Plancherel formula∫
G

|f(x)|2dx =

∫
Ĝ

tr(f̂(π)∗f̂(π))dµ(π) =

∫
Ĝ

‖f̂(π)‖2
HSdµ(π). (3.8)

(Where tr denotes trace and ‖ · ‖HS denotes the Hilbert-Schmidt norm.)

To compute the Plancherel measure for Hn, we will use the parametrisation of Ĥn. If

f ∈ L1(Hn), h ∈ R− {0}, and φ ∈ L2(Rn), f̂(πλ)φ is given by

f̂(πλ)φ(t) =

∫ ∫ ∫
f(x, y, z)πλ(−x,−y,−z)φ(t)dx dy dz

=

∫ ∫ ∫
f(x, y, z)e−2πixt+πiλxy−2πiλzφ(t− λx)dx dy dz

= |λ|−n
∫ ∫ ∫

f(λ−1(t− s), y, z)e−πi(s+t)y−2πiλzφ(s)ds dy dz.

Thus, f̂(πλ) is an integral operator with kernel

Kλ
f (t, s) = |λ|−n

∫ ∫
f(λ−1(t− s), y, z)e−πi(s+t)y−2πiλzdy dz

= |λ|−nF2,3f(λ−1(t− s), 1

2
(t+ s), λ),

(3.9)

where F2,3 denotes the Fourier transformation in the second and third variables.

Moreover,

f̂(πλ)πλ(x, y, z) =

∫ ∫ ∫
f(x′, y′, z′)πλ(−x′,−y′,−z′)πλ(x, y, z)dx′ dy′ dz′

=

∫ ∫ ∫
f(x′, y′, z′)πλ(x− x′, y − y′, z − z′ −

1

2
(y′x− x′y))dx′ dy′ dz′

= ĝ(πλ)

where g(x′, y′, z′) = f(x − x′, y − y′, z − z′)eπiλ(x′y−y′x). Hence, in view of (3.9), the

integral kernel of f̂(πλ)πλ(x, y, z) is

F (t, s) = |λ|−n
∫ ∫

f(x−λ−1(t−s), y′, z′)eπi[(t−s)y−(y−y′)x]−πi(t+s)(y−y′)−2πiλ(z−z′)dy′ dz′.
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If f is such that all the integrals converge nicely, then, we have

tr(f̂(πλ)πλ(x, y, z)) =

∫
F (t, t)dt

= |λ|−n
∫ ∫ ∫

f(x, y′, z′)eπix(y−y′)−2πit(y−y′)−2πiλ(z−z′)dy′ dz′ dt

= |λ|−n
∫
f(x, y, z′)e−2πiλ(z−z′)dz′.

But by the (ordinary) Fourier inversion formula,

f(x, y, z) =

∫ ∫
f(x, y, z′)e−2πiλ(z−z′)dz′ dλ =

∫
tr(f̂(πλ)πλ(x, y, z))|λ|ndλ.

Thus (3.7) holds if we define the Plancherel measure on Ĥn to be |λ|ndλ on the family

{πλ} and 0 on the family {π(a,b)}. Moreover, by (3.9) and the (ordinary) Plancherel

theorem,

‖f̂(πλ)‖2
HS =

∫
|Kλ

f (t, s)|2dt dy

= |λ|−2n

∫ ∫
|F2,3f(λ−1(t− s), 1

2
(t+ s), λ)|2dt ds

= |λ|−n
∫ ∫

|F2,3f(x, t, λ)|2dx dt

= |λ|−n
∫ ∫

|F3f(x, y, λ)|2dx dy,

(3.10)

so that (3.8) also holds:

‖f‖2
2 =

∫
|λ|n‖f̂(πλ)‖2

HSdλ.

3.6 The Fock-Bargmann Representation

There is a realisation of the infinite-dimensional irreducible representation of Hn in

a Hilbert space of entire functions. First, we will carry analysis on π and then will

generalise to πλ. Let

φ0(x) = 2n/4e−πx
2
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be the standard Gaussian on Rn. Since ||φ0||2 = 1, by Proposition 4 the map f →

V (f, φ0) is an isometry from L2(Rn) into L2(R2n). Explicitly, we have

V (f, φ0)(x, y) = 〈f, π(−x,−y)φ0〉

= 2n/4
∫
f(t)e2πiyt−πixye−pi(t−x)2dt

= 2n/4e−(π/2)(x2+y2)

∫
f(t)e2πt(x+iy)−πt2−(π/2)(x+iy)2dt.

For z ∈ Cn let us define

Bf(z) = 2n/4
∫
f(t)e2πtz−πt2−(π/2)z2dt.

Then we have

V (f, φ0)(x, y) = e−(π/2)|z|2Bf(z), with z = x+ iy.

Definition 24. Bf is called the Bargmann transform of f .

For f ∈ L2, using dominated convergence theorem, Bf is entire analytic function

on Cn. Moreover, since map f → V (f, φ0) is an isometry on L2, B is an isometry

from L2(Rn) into L2(Cn, e−π|z|
2
dz). Hence B is an isometry from L2(Rn) into the

Fock space

Fn =

{
F : F is entire on Cn and ‖F‖2

F =

∫
|F (z)|2e−π|z|2dz <∞

}
.

Theorem 23. Let

ζα(z) =

√
π|α|

α!
zα.

Then {ζα : |α| ≥ 0} is an orthonormal basis for Fn.

Corollary 4. If F ∈ Fn then the Taylor series of F converges to F in the topology

of Fn.

Corollary 5. If F ∈ Fn then |F (z)| ≤ e(π/2)|z|2‖F‖F for all z ∈ Cn.
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Proof. The Fourier series of F with respect to the basis {ζ(α} is the Taylor series of

F , according to proof of Theorem 23. Thus, if F =
∑
aαζα, the Schwarz inequality

yields

|F (z)| =
∣∣∣∑ aα(π|α|/α!)1/2zα

∣∣∣
≤
(∑

a2
α

)1/2 (∑
(π|α|/α!)z2α

)1/2

= ‖F‖Fe(π/2)|z|2 .

By previous corollary, for each z the map F → F (z) is a bounded linear functional

on Fn, so there exists Ez ∈ Fn such that

F (z) = 〈F,Ez〉F .

To identify Ez we have,

Ez(w) =
∑
〈Ez, ζα〉Fζα(w) =

∑
ζα(z)ζα(w)

=
∑

(π|α|zαwα/α!) = eπwz.
(3.11)

Therefore, the function K(z, w) = eπzw is the reproducing kernel for the space Fn:

F (z) =

∫
eπzwF (w)e−π|w|

2

dw, for F ∈ Fn, z ∈ Cn.

Also observe that

‖Ez‖2
F =

∑ π|α|

α!
|zα|2 = eπ|z|

2

. (3.12)

Proposition 5. If T is a bounded operator on Fn, let KT (z, w) = TEw(z). Then KT

is an entire function on C2n that satisfies

1. KT (·, w) ∈ Fn for all w and KT (z, ·) ∈ Fn for all z,

2. |KT (z, w)| ≤ e(π/2)(|z|2+|w|2)‖T‖,
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3 Heisenberg group

3. TF (z) =
∫
KT (z, w)F (w)e−π|w|

2
dw for all F ∈ Fn and z ∈ Cn.

We now return to consideration of the Heisenberg group. The representation

π can be transferred via the Bargmann transform to a representation β of Hn on

B(L2(Rn))(which will coincide with Fn). To describe the representation, identify the

underlying manifold of Hn with Cn × R:

(x, y, t)↔ (x+ iy, t).

In this parametrisation of Hn the group operation is given by

(z, t)(z′, t′) = (z + z′, t+ t′ +
1

2
Imzz′).

The transferred representation β is then defined by

β(x+ iy, t)B = Bπ(x, y, t).

As with π, set

β(w) = β(w, 0), i.e., β(w, t) = e2πitβ(w).

Now to calculate β. Let z = x+ iy, w = r + is. Then for f ∈ L2(Rn),

[β(w)Bf ](z) = [Bπ(r, s)f ](z)

= e(π/2)|z|2V (π(r, s)f, φ0)(x, y)

= e(π/2)|z|2eπi(xs−yr)V (f, φ0)(x+ r, y + s)

= e(π/2)|w|2−πzwBf(z + w).

In other words,

β(w, t)F (z) = e(π/2)|w|2−πzw+2πitF (z + w). (3.13)

Observe that

Bφ0(z) = 2(n/2)e−(π/2)|z|2
∫
e−2πzu−2πu2du = 1 = E0(z),
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and hence, if w = r + is,

B(π(r, s)φ0)(z) = β(w)(1)(z) = e−(π/2)|w|2−πzw = e−(π/2)|w|2E−w(z). (3.14)

Thus all the Ew’s are in the range of B, and since 〈F,Ew〉F = 0 only when F = 0, it

follows that B(L2(Rn)) = Fn as claimed.

Finally, we modify the construction Fock-Bargmann representation for πλ. For λ > 0,

define the Fock space to be

Fλn =

{
F : F is entire on Cn and ‖F‖2

F = λn
∫
|F (z)|2e−πλ|z|2dz <∞

}
and Bargmann transform Bλ : L(Rn)→ Fλn to be

Bλ(z) = e(πλ/2)|z|2〈πλ(x, y)f, φλ〉

where

z = x+ iy and φλ(x) = (2/λ)n/4e−(π/λ)x2 .

Then the representation

βλ = Bλπλ(r, s)B
−1
λ (w = r + is)

is given by

βλ(w)F (z) = e(πλ/2)|w|2−πλzwF (z + w).

On the other hand, if λ < 0, the Fock space Fλn consists of antiholomorphic functions:

Fλn = {F ◦ c : F ∈ F |λ|n }, where c(z) = z.

These representations will be used in the next chapter to define spherical functions

on Heisenberg motion group.
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Chapter 4

Heisenberg Motion Group
In this chapter we study a particular Gelfand pair, namely Heisenberg motion group

and will apply the general theory to get Plancherel inversion formula and Plancherel-

Godemant measure.

4.1 Introduction

The compact group U(n) acts over Hn by

u · (z, t) = (u · z, t), ∀u ∈ U(n), (z, t) ∈ Hn.

Then we form a group using semi-direct product, given by

G = Hn o U(n),

with the group operation:

((z, t), k1)((w, s), k2) =

(
(z + k1 · w, t+ s+

1

2
(zk1 · w)), k1k2

)
, k1, k2 ∈ U(n).

We have already shown that (G,K) forms a Gelfand pair with K = U(n).

4.2 Spherical functions on Hn o U(n)

This section mainly follows from [2].

Lemma 15. A function on G is K-bi invariant iff

f(0, u) = f(0, e), ∀u ∈ U(n)
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4 Heisenberg Motion Group

and f restricted to Hn is radial, that is,

f((z, t)) = f((w, s)) if |z| = |w|.

Proof. Observe that

(0, k1)((z, t), k)(0, k2) = ((k1 · z, t), k1k2), ∀k1, k, k2 ∈ U(n).

Therefore, f is K-bi invariant iff

f((k1 · z, t), k1kk2) = f((z, t), k),

that is, if k = e, k2 = e then f(((k1 · z, t), k1)) = f(((z, t), e)).Also, f is uniquely fixed

by f|Hn and

f|Hn ((z, t)) = f|Hn ((|z|, t)).

Recall that dz dt is the Haar measure for Hn. Also, dz is U(n)-invariant. There-

fore, dz dt dk is the Haar measure for G. In particular, if f ∈ L1(G)\, then∫
G

f(((z, t), k))dzdtdk =

∫
Hn

∫
K

f((|z|, t), e)dzdtdk

=

∫
Hn

f|Hn ((|z|, t))dzdt

Hence, L1(G)\ = {f ∈ L1(Hn)|fisradial}. With the abuse on notation, we can write

L1(G)\ = L1(Hn)\.

Lemma 16. Any continuous K-bi invariant function φ on G is spherical if and only

if φ|Hn is radial, φ(e) = 1 and∫
K

φ(xk · y)dk = φ(x)φ(y), x, y ∈ Hn.
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4 Heisenberg Motion Group

Proof. For (x, k1)(0, k)(y, k2) = (x(k1k2) · y, k1kk2), where x = (z, t), y = (w, s). We

have,

φ(x)φ(y) =

∫
K

φ((x, k1)(0, k)(y, k2))dk

=

∫
K

φ(x(k1k) · y, k1kk2)dk

=

∫
K

φ(x(k1k) · y)dk

=

∫
K

φ(xk · y)dk

Lemma 17. Suppose that φ is bounded and spherical. Then there exists a π ∈ H∧n , ξ ∈

Hπ such that

φ(x) =

∫
K

〈π(k · x)ξ, ξ〉dk.

In particular, if φ is bounded and spherical then φ is positive definite.

For all π ∈ H∧n , k ∈ K, define

πk(x) = π(kx).

Then πk ∈ H∧n and define

Kπ = {k ∈ K|πk is equivalent to π}.

Let Wπ(k) denote the intertwining operator of πk and π, that is,

πk(x) = Wπ(k) ◦ π(x) ◦Wπ(k)−1, ∀x ∈ Hn.

Recall that

H∧n = {βλ|λ ∈ R∗} ∪ {χw|w ∈ Cn},

where, βλ is Fock-Bargmann representation on Fock space Fλn given by:

Fλn =

{
f : C→ C : f is entire and

∫
|f(z)|2e−(|λ|/2)|z|2dz <∞

}
.
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4 Heisenberg Motion Group

Also, if λ > 0 then

βλ(z, t)φ(w) = eiλte−(λ/4)|z|2−(λ/2)wzφ(w + z).

If λ < 0, then βλ(z, t) = βλ(z,−t).

Proposition 6. For all λ ∈ R∗,

βλ(k · x) = W (k) ◦ βλ(x) ◦W (k)−1,

where W (k)φ(ξ) = φ(k−1ξ).

Note that (βλ)k(x) = βλ(k ·x) = W (k) ◦βλ(x) ◦W (k)−1, by previous Proposition.

This gives

(βλ)k ∼= βλ, ∀k ∈ U(n).

Hence, Kβλ = U(n) and

W (k) = Wβλ(k), ∀k ∈ U(n)

. If π = χw, then πk = χkw, Kπ = {e}.

Notation: Let φ be spherical, denote

φπ,ξ(x) =

∫
K

〈π(k · x)ξ, ξ〉dk = φ(x).

Remark: Let λ ∈ R∗. Then

Fλn = ⊕∞m=0Pm,

where, Pm consists of homogeneous polynomials of degree m in n variables. Also, U(n)

acts irreducibly on Pm, that is the action W of k on Fλn splits into U(n)-irreducible

subspace Pm of Fλn . The following theorem is adapted from [1].

Theorem 24. (Benson et al.)

1. φπ,ξ is spherical iff π ∈ H∧n and ξ ∈ Pm for some m ∈ N ∪ {0} and ‖ξ‖ = 1.

2. φπ,ξ = φπ′,ξ′ if π = π′ and ξ, ξ′ ∈ Pm for some m. In particular, φβλ,ξ = φβλ,ξ′ if

ξ, ξ′ ∈ Pm, for some m.
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4 Heisenberg Motion Group

4.3 Space Ω for Hn o U(n)

From the general theory of Gelfand pairs and results of previous section, we get for

(G,K)

∆(L1(G)\) = Ω = {ωλ,m|λ ∈ R∗,m ∈ N ∪ {0}} ∪ {φµ|µ ∈ R∗} ,

where

ωλ,m(x) =

∫
U(n)

〈βλ(k · x)v, v〉dk,

v ∈ Pm given by v = ζα (as defined in Theorem 23), α = (0, . . . , 0,m) and

φµ(x) =

∫
S2n−1

eiµ|z|dσ(z), x = (z, t),

where σ is the normalised surface measure of S2n−1. We will shortly note that φµ are

explicitly given in terms of Bessel’s function and ωλ,m in terms of Laguerre polyno-

mials.

The Bessel function of first kind are given by:

∀ν ∈ R, Jν(z) =
(z

2

)ν ∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(z
2

)k
.

Take

jν(z) = Γ(ν + 1)
(z

2

)−ν
Jν(z),

and note that (for detailed proof refer to [4])

Proposition 7.

jn−2
2

=
Γ(n/2)

Γ(1/2)Γ((n− 1)/2)

∫ 1

−1

e−irt(1− t2)
n−3
2 dt.

Lemma 18. Let σ denote the surface measure. Fix r > 0 then

σ̂(ren) =

∫
Sn−1

e−i(renu)dσ(u) = ωn−1jn−2
2

(r).
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4 Heisenberg Motion Group

Proof. Recall that under the spherical coordinates

dσ(θ1, . . . , θn) = sin(n−2) θn−1, . . . , sin θ2, dθ1 · · · dθn

. Also the area of Sn−1 is given by

ωn−1 =
2πn/2

Γ(n/2)
.

Now,

σ̂(ren) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

e−ir cos θn−1 sin(n−2) θn−1 · · · sin θ2dθ1 · · · θn

= ωn−2

∫ π

0

e−ir cos θn−1 sin(n−2) θn−1dθn−1

= ωn−2

∫ 1

−1

e−irt(1− t2)(n−3)/2dt

=
2πn/2

Γ(n/2)
jn−2

2
(r) = ωn−1 jn−2

2
(r).

Therefore, we get

φµ(z, t) = jn−2
2

(µ|z|).

Let m ∈ N ∪ {0} then define

Lαm(x) =
m∑
k=0

(−1)k
Γ(m+ α + 1)

Γ(k + α + 1)

1

k!(m− k)!
xk. (4.1)

The Lαm(x) is defined to be Laguerre polynomial. For more details one can refer to [4].

The space Pm of homogeneous polynomials with degree m is subspace of Fλ is invari-

ant by U(n) and is irreducible under its action. By Schur’s lemma, as β commutes

with the action of U(n):

∀u ∈ U(n), Wuβ = βWu,

then the subspaces Pm are eigenspace of β, that is, for every m there exists a number

µm such that, if φ ∈ Pm, then

βφ = µmφ.
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Let f be an integrable radial function on Hn then:

∀u ∈ U(n), f(uz, t) = f(z, t)

and with the relation

βλ(uz, t) = Wuβλ(z, t)Wu−1

we deduce

βλ(f) = Wuβλ(f)Wu−1 ,

that is to say that the operator βλ(f) commutes with the operators Wu, and con-

sequently the space Pm is the eigenspace for βλ(f). We note that f̂(λ,m) is the

corresponding eigenvalue,

∀φ ∈ Pm, βλ(f)φ = f̂(λ,m)φ.

Lemma 19. Let dσ denote the normalised surface measure on unit sphere, S, of Cn.

If F is continuous on a closed unit disc of C, then∫
S

F (un)dσ(u) =
n− 1

π

∫ π
2

0

∫ 2π

0

F (cos θeiφ) sin2n−3 θ cos θdθdφ.

Proof. Let h be any function on [0,∞) such that∫ ∞
0

|h(r)|r2n−1dr <∞.

Define f : Cn → C by

f(z) = h(|z|)F
(zn
z

)
= f1(|z′|, zn),

where z = (z1, . . . , zn), z′ = (z1, . . . , zn−1) and f is Cn−1 radial. Therefore,∫
Cn
f(z)dz = ω2n−2

∫ ∞
0

∫ ∞
0

∫ 2π

0

f1(ρ′, ρeiφ)(ρ′)2n−3ρdρdρ′dφ.
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Take ρ′ = r sin θ, ρ = r cos θ, (ρ′)2 + ρ2 = 1. Then we have,∫
Cn
f(z)dz = ω2n−2

∫ ∞
0

∫ π/2

0

∫ 2π

0

f1(r sin θ, r cos θeiφ)(r sin θ)2n−3(r cos θ)rdrdθdφ

= ω2n−2

∫ ∞
0

∫ π/2

0

∫ 2π

0

h(r)F

(
cos θeiφ

r

)
r2n−1(sin θ)2n−3(cos θ)drdθdφ

= ω2n−2

[∫ ∞
0

h(r)r2n−1dr

] ∫ π/2

0

∫ 2π

0

F
(
cos θeiφ

)
(sin θ)2n−3(cos θ)dθdφ

But ∫
Cn
f(z)dz = ω2n

[∫ ∞
0

h(r)r2n−1dr

] ∫
S

F (un)dσ(u).

Therefore,∫
S

F (un)dσ(u) =
(n− 1)

π

∫ π/2

0

∫ 2π

0

F
(
cos θeiφ

)
(sin θ)2n−3(cos θ)dθdφ

By putting cos θ = r we have,∫
S

F (un)dσ(u) =
n− 1

π

∫ 1

0

∫ 2π

0

F (reiφ)(1− r2)rdrdφ.

Theorem 25. If λ ∈ R∗, m ∈ N ∪ {0} then

ωλ,m(z, t) =
(n− 1)!m!

(m+ n− 1)!
eiλt−

|λ|
2
|z|2L(n−1)

m (|λ||z|2).

Proof. First let us take n = 1. Let φm(ζ) =
(
|λ|m
m!

)1/2

ζm. Let λ > 0, then,

〈βλ(z, t)φm, φm〉 =
λm

m!

(
λ

2π

)
eiλte−(1/2)λ|z|2

∫
C
e−λ|ζ|

2

e−λzζ(ζ + z)m(ζ)mdζ. (4.2)

The coefficient of ζm in e−λzζ(ζ + z)m is

m∑
k=0

(−1)m
λk(zk

k!

m!

(m− k)!k!
zk = Lm(λ|z|2).

Since equation (4.2) is of the form 〈·, φm〉 in Fn, we have

〈βλ(z, t)φm, φm〉 = eiλte−(1/2)λ|z|2Lm(λ|z|2).
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Now, take n ≥ 1 and consider φm(ζ) = φα(ζ) =
(
|λ|m
m!

)1/2

ζm, α = (0, . . . , 0,m).

Therefore,

〈βλ(z, t)φm, φm〉 = eiλte−(1/2)λ|z|2Lm(λ|z|2).

We know that

ωλ,m(z, t) =

∫
S

〈βλ(z, t)φm, φm〉dσ(u).

Let |z| = r Then

ωλ,m(z, t) = eiλte−(1/2)λr2
∫
S

Lm(λr2|un|2)dσ(u).

We shall now proceed to compute the above integral. By the Lemma 19, we have∫
S

Lm(λr2|un|2)dσ(u) =
(n− 1)

π

[∫ π/2

0

Lm(λr2 cos2 θ)(sin θ)2n−3 cos θdθ

]
2π

= 2(n− 1)

∫ π/2

0

Lm(λr2 cos2 θ)(sin θ)2n−3 cos θdθ

Since

2

∫ π/2

0

cos2k+1 θ sin2n−3 θdθ =
k!(n− 2)!

(k + n− 1)!

and by expanding Lm we get,∫
S

Lm(λr2|un|2)dσ(u) = (n− 1)!
m∑
k=0

m!

k!(m− k)!(k + n− 1)!
λkr2k

=
(n− 1)!m!

(m+ n− 1)!
Ln−1
m (λr2)

Similarly, one can proceed for λ < 0. Hence, the theorem.

4.4 Plancherel-Godemant measure

One may refer to [2] for further discussion.

Definition 25. For every f ∈ L1(Hn)\, define Fourier transform f̂ of f by

f̂(λ,m) =

∫
Hn

f(x)ωλ,m(x)dx.
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Theorem 26. (Spherical Fourier inversion formula) For all f ∈ Cc(Hn)\,

f(0, 0) =
1

(2π)n+1

∫ ∞
−∞

∞∑
n=0

(m+ n− 1)!

(n− 1)!m!
f̂(λ,m)|λ|ndλ.

Proof. Recall that Fourier inversion formula for Hn is given by

f(0, 0) =
1

(2π)n+1

∫
Hn

Tr(βλ(f))|λ|ndλ.

Since Fn =
∑⊕ Pm:

Tr(βλ(f)) =
∞∑
0

Tr(βλ(f)|Pm).

Hence, we shall first compute Tr(βλ(f)|Pm). Since (ρm, Pm) is U(n) irreducible, and

βλ(f) commutes with ρm since f ∈ Cc(Hn)\, we have

βλ(f) = αI,

for some α. If ξ is any unit vector in Pm, we have,

α = 〈ξ, ξ〉 = 〈βλ(f)ξ, ξ〉.

Take φm = ζα, α = (0, . . . , 0,m) where ζα is as defined in Theorem 23. Then

α = 〈βλ(f)φm, φm〉.

〈βλ(f)φm, φm〉 =

∫
Hn

f(z, t)〈βλ(z, t)φm, φm〉dzdt

=

∫
Hn

f(z, t)ωλ,m(z, t)dzdt = f̂(λ,m).

Therefore,

Tr(βλ(f)|Pm) = αdim(Pm) = f̂(λ,m)
(m+ n− 1)!

(n− 1)!m!
.

Hence,

Tr(βλ(f)) =
∞∑
m=0

(m+ n− 1)!

(n− 1)!m!
f̂(λ,m),

and we get,
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f(0, 0) =
1

(2π)n+1

∫ ∞
−∞

∞∑
n=0

(m+ n− 1)!

(n− 1)!m!
f̂(λ,m)|λ|ndλ.

Theorem 27. (Spherical Plancherel theorem) For all f ∈ (L1 ∩ L2)(Hn)\,∫
Hn

|f(z, t)|2dzdt =

∫
R∗

∑
m∈N∪{0}

(m+ (n− 1))!

m!(n− 1)!
|f̂(λ,m)|2|λ|ndλ.

Note that Supp(dσ) = R∗ × (N ∪ {0}) $ Ω.
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Appendix A

Trace-Class and Hilbert-Schmidt Operators

Let H be a Hilbert space which is separable. Let T be a positive operator on H.

Definition 26. T is trace-class if T has an orthonormal eigenbasis {en} with eigen-

values {λn} and
∑

n λn <∞.

Notation: We set tr(T ) =
∑

n λn.

Remark: Every tace-class positive operator T is compact, for T is the norm limit of

finite-rank operators TNu =
∑N

1 λn〈u, en〉en.

Proposition 8. If T is positive and trace-class and {xn} is any orthonormal basis

for H, then
∑
〈Txn, xn〉 = tr(T ).

Proof. Let {ej} be an orthonormal eigenbasis for T with eigenvalues {λj}. Since

xn =
∑
〈xn, ej〉ej and

∑
n |〈xn, ej〉|2 = ‖ej‖2 = 1, we have∑

n

〈Txn, xn〉 =
∑
n

∑
j

〈xn, ej〉〈Tej, xn〉 =
∑
n

∑
j

λj|〈xn, ej〉|2 =
∑
j

λj.

Interchanging the sums is permissible since all terms are positive.

Proposition 9. Suppose T is a positive and trace-class, S ∈ L(H), and {xn} is an

orthogonal basis for H. Then the sum
∑
〈STxn, xn〉 is absolutely convergent, and its

value depends only on S and T , not on {xn}.

Proof. Let {ej} be an orthonormal eigenbasis for T with eigenvalues {λj}. Then

〈STxn, xn〉 =
∑
j

λj〈xn, ej〉〈Sej, xn〉.
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Now,

∑
n

∑
j

λj|〈xn, ej〉〈Sej.xn〉| ≤
∑
j

λj

[∑
n

|〈xn, ej〉|2
]1/2 [∑

n

|〈Sej, xn〉|2
]1/2

=
∑
j

λj‖ej‖‖Sej‖ ≤ ‖S‖
∑
j

λj <∞

This implies that
∑
〈STxn, xn〉 is absolutely convergent and that

∑
n

〈STxn, xn〉 =
∑
j

〈STej, ej〉.

Now suppose T is an arbitrary bounded operator on H. T ∗T is always a positive

operator, so define

|T | =
√
T ∗T .

Definition 27. An operator T ∈ L(H) is trace-class if the positive operator |T | is

trace-class.

Proposition 10. Suppose T is trace-class. Then T is compact, and if {xn} is any or-

thonormal basis for H, the sum
∑
〈Txn, xn〉 is absolutely convergent and independent

of {xn}.

If T is trace-class, we set

tr(T ) =
∑
〈Txn, xn〉,

where {xn} is any orthonormal basis for H. This is well defined due to proposition

10.

Definition 28. An operator T ∈ L(H) is called Hilbert-Schimdt if T ∗T is trace-class.
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Remark: Since T ∗T is positive and 〈T ∗Tu, u〉 = ‖Tu‖2, it follows from Propo-

sition 8 that T is Hilbert-Schmidt if and only if
∑
‖Txn‖2 < ∞ for some/ any

orthonormal basis {xn}.

Every Hilbert-Schmidt operator is compact.

Proposition 11. If T is Hilbert-Schmidt, so is T ∗. If S and T are Hilbert-Schmidt,

then ST is trace-class.

Proof. If {xn} is an orthonormal basis for H, we have∑
n

‖Txn‖2 =
∑
n

∑
n

|〈Txn, xm〉|2

=
∑
m

∑
n

|〈T ∗xm, xn〉|2

=
∑
m

‖T ∗xm‖2.

This proves the first assertion. For th esecond, let ST = V |ST | be the polar decom-

position of ST . (ST )∗(ST ) is compact and so has an orthonormal eigenbasis {en}. It

is also an eignbasis for |ST |, and we have,∑
〈|ST |en, en〉 =

∑
〈V ∗STen, en〉

=
∑
〈Ten, S∗V en〉

≤
[∑

‖Ten‖2
]1/2 [∑

‖S∗V en‖2
]1/2

.

But each en belongs either to the nullspace of V or its orthogonal complement, so the

nonzero V en’s are an orthonormal set. Since S∗ and T are Hilbert-Schmidt, it follows

that
∑
‖SV en‖2 <∞ and

∑
‖Ten‖2 <∞, so |ST | is trace-class.

For further details, one might refer to [5].
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Krein-Milman theorem

We state Krein-Milman theorem. For detailed proof, one may refer to Chapter 3

of [11]. We denote the set of extreme points of a space, X, as Ext(X).

Theorem 28. Suppose X is a locally convex space. If K is nonempty compact set in

X, then

1. Ext(K) is non-empty.

2. K is closed convex hull of the set of its extreme points, that is,

K = co(Ext(K)).
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[5] G.B. Folland. Real Analysis: Modern Techniques and Their Applications. Pure

and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts.

Wiley, 2013.

[6] G.B. Folland. A Course in Abstract Harmonic Analysis, Second Edition. Text-

books in Mathematics. CRC Press, 2016.

[7] Gerald B. Folland. Harmonic Analysis in Phase Space. (AM-122). Princeton

University Press, 1989.

[8] Frederick Greenleaf and L Corwin. Representations of nilpotent Lie groups and

their applications. Part I: Basic theory and examples. Cambridge Studies in

Advanced Math. Cambridge University Press, 1990.

[9] A A Kirillov. Unitary representations of nilpotent lie groups. Russian Mathe-

matical Surveys, 17(4):53, 1962.

63



REFERENCES

[10] S. Kumaresan. A Course in Differential Geometry and Lie Groups. Texts and

Readings in Mathematics. Hindustan Book Agency, 2002.

[11] Walter Rudin. Functional analysis. International Series in Pure and Applied

Mathematics. McGraw-Hill Inc., New York, second edition, 1991.

[12] Elias M. Stein and Rami Shakarchi. Fourier Analysis: An Introduction. Prince-

ton Lectures in Analysis I. Princeton University Press, 2003.

64


