3.0.1 Closed subgroups of \mathbb{R}^n . **Definition 3.0.2.** A closed subgroup Γ is said to be a *l*attice if there exists a linearly independent set $\{v_1, v_2 \cdots v_k\}$ in an Euclidean space \mathbb{R}^n satisfying $$\Gamma = \left\{ \sum_{1}^{k} m_i v_i : m_i \in \mathbb{Z} \right\}.$$ **Remarks 3.0.2.** 1. If Γ is a lattice then it is a nontrivial discrete closed subgroup of \mathbb{R}^n . 2. In what follows we show that any nontrivial discrete closed subgroup of \mathbb{R}^n is a lattice. **Proposition 3.0.2.** If Γ is a closed discrete subgroup of \mathbb{R}^n then Γ is a lattice. *Proof.* Without loss of generality assume that the span of Γ equals \mathbb{R}^n . We shall prove by induction on the dimension of spaces. For every linearly independent set $\{v_1, v_2 \cdots v_k\}$ in Γ let W_k denote the vector subspace spanned by $\{v_1, v_2 \cdots v_k\}$. <u>Claim:</u> There exists a basis $\{v_1, v_2 \cdots v_n\}$ in Γ such that $\Gamma = \{\sum_{i=1}^{n} m_i v_i : m_i \in \mathbb{Z}\}$. <u>Sublaim:</u> For every k satisfying $1 \le k \le n$ there exists a linearly independent set $\{v_1, v_2 \cdots v_k\}$ in Γ such that $\Gamma \cap W_k = \left\{ \sum_{1}^k m_i v_i : m_i \in \mathbb{Z} \right\}.$ (†) Suppose that the subclaim is valid for k < n. If $\{v_1, v_2 \cdots v_k\}$ satisfies (†) let v belong to $\Gamma \setminus W_k$. Let $E = \left\{ \sum_{1}^{k} \alpha_{i} v_{i} : 0 \leq \alpha_{i} \leq 1 \right\}$. Then d(v, E) > 0. Let d = d(v, E). Then consider $E_{d} = \left\{ w \in \mathbb{R}^{n} : d(w, E) \leq d \right\}$. Then $E \subseteq E_{d}$ and v belongs to E_{d} . Observe that the set $\Gamma \cap E_{d}$ is finite and so $(\Gamma \setminus W_{k}) \cap E_{d}$ is finite and v belongs to $(\Gamma \setminus W_{k}) \cap E_{d}$. There exists v_{k+1} belonging to $(\Gamma \setminus W_{k}) \cap E_{d}$ such that $d(v_{k+1}, E) \leq d(w, E)$ for every $w \in \Gamma \setminus W_{k}$. We shall show that $d(v_{k+1}, W_k) \leq d(w, W_k)$ for every $w \in \Gamma \setminus W_k$. Fix w in $\Gamma \setminus W_k$. If $y = \sum_{1}^k \alpha_i v_i$ with α_i belonging to \mathbb{R} , let $z = \sum_{1}^k [\alpha_i] v_i$ where $[\alpha]$ is the greatest integer less than or equal to α . Then y - z belongs to E, and w - z belongs to $\Gamma \setminus W_k$. Therefore, $$d(v_{k+1}, W_k) \le d(v_{k+1}, E) \le d(w - z, E) \le d(w - z, y - z) = d(w, y).$$ Let W_{k+1} denote the k+1 dimensional subspace of \mathbb{R}^n with the basis $\{v_1, v_2 \cdots v_{k+1}\}$. We shall show that $\Gamma \cap W_{k+1} = \left\{\sum_1^{k+1} m_i v_i : m_i \in \mathbb{Z}\right\}$. Let $v = \sum_1^{k+1} \alpha_i v_i$ be in $\Gamma \cap W_{k+1}$. Assume that $[\alpha_{k+1}]$ is not zero. Now, $x = v - [\alpha_{k+1}] v_{k+1}$ belongs to $\Gamma \setminus W_k$ and $$d(x, W_k) = d((\alpha_{k+1} - [\alpha_{k+1}])v_{k+1}, W_k) = (\alpha_{k+1} - [\alpha_{k+1}])d(v_{k+1}, W_k)$$ Since $(\alpha_{k+1} - [\alpha_{k+1}])$ is smaller than 1 we have $(\alpha_{k+1} - [\alpha_{k+1}]) = 0$. That is α_{k+1} is an integer. Also since $v - \alpha_{k+1}v_{k+1}$ belongs to $\Gamma \cap W_k$ we have α_j belongs to \mathbb{Z} , for all $j, 1 \leq j \leq k$. It is trivial that if $[\alpha_{k+1}]$ is zero then also the assertion holds. Hence the claim. **Proposition 3.0.3.** If H is a non-trivial closed subgroup of \mathbb{R}^n and if H is not discrete, then there exists a nonzero vector v in \mathbb{R}^n such that $\mathbb{R} \cdot v$ is contained in \mathbb{R}^n . *Proof.* Let $\{h_n\}_{n=1}^{\infty}$ be a sequence in H converging to 0. Assume that $h_n \neq 0$ for all n. Let us take a subsequence if necessary and assume that the sequence $\left\{\frac{h_n}{\|h_n\|}\right\}$ converges to v. in \mathbb{R}^n . We show that αv belongs to H, for every α in \mathbb{R} . Since $a_n = \frac{\alpha}{\|h_n\|}$ tends to ∞ and $1 \leq \frac{a_n}{[a_n]} \leq 1 + \frac{1}{[a_n]}$ and so $\lim_n \frac{a_n}{[a_n]} = 1$. $$\alpha v = \lim_{n} \alpha \frac{h_n}{\|h_n\|} = \lim_{n} \frac{\alpha}{\|h_n\|} h_n$$ $$= \lim_{n} a_n h_n$$ $$= \lim_{n} \frac{a_n}{[a_n]} [a_n] h_n$$ $$= \lim_{n} [a_n] h_n$$ Since $[a_n]h_n$ belongs to H, we see that αv belongs to H for all α in \mathbb{R} . **Theorem 3.0.4.** Let H be a closed subgroup of \mathbb{R}^n . Then H is topologically isomorphic to $\mathbb{R}^{\ell} \times \mathbb{Z}^m$ for some ℓ, m . with $\ell + m = n$. If H is not discrete, then there exists v_1 such that the subspace spanned by v is contained in H. Passing to quotient spaces, we assume that k is the largest number so that the vector space W_k spanned by $\{v_1, v_2 \cdots v_k\}$ is contained in H. Consider the quotient group $\frac{H}{W_k}$ in the Euclidean space $\frac{\mathbb{R}^n}{W_k}$. For any subgroup K of G any subgroup K' of G containing K is closed if and only if $\pi(K')$ is closed in G/K. Therefore the quotient group H/W_k is closed in the Euclidean space $\frac{\mathbb{R}^n}{W_k}$. Also, it is discrete by the definition of k. Therefore, H/W_k is given by $\mathbb{Z}^m \times R^p$ for some p. Finally $H = \mathbb{R}^k \times \mathbb{Z}^m \times R^p$. Hence the theorem.